

staticjinja

staticjinja is a library for easily deploying static sites using the
Jinja2 [https://jinja.palletsprojects.com] template engine.

Most static site generators are cumbersome to use. Nevertheless, when
deploying a static website that could benefit from factored out data
or modular HTML pages (especially convenient when prototyping), a
templating engine can be invaluable. Jinja2 is an extremely powerful
tool in this regard.

staticjinja is designed to be lightweight, easy-to-use, and highly
extensible, enabling you to focus on simply making your site.

$ mkdir templates
$ vim templates/index.html
$ staticjinja watch
Building index.html...
Templates built.
Watching 'templates' for changes...
Press Ctrl+C to stop.

User Guide

This part of the documentation focuses on step-by-step instructions
for getting the most of staticjinja.

	Quickstart
	Installation

	Rendering templates with CLI

	CLI Configuration

	Next Steps

	Advanced Usage
	Partials and ignored files

	Using Custom Build Scripts

	Loading data

	Filters

	Rendering rules

API Documentation

If you are looking for information on a specific function, class, or
method, this part of the documentation is for you.

	Developer Interface
	Classes

Contributor Guide

If you want to contribute to the project, this part of the
documentation is for you.

	Contributing

	Authors

	Changelog

Quickstart

Eager to get started? This page gives a good introduction for getting
started with staticjinja.

Installation

Installing staticjinja is simple with pip [https://pip.pypa.io]:

$ pip install staticjinja

This installs two things:

	A command line interface (CLI) to staticjinja for basic needs.

	A python library, accessible via the Developer Interface, to be used with a custom
python build script for advanced needs.

Rendering templates with CLI

If you’re just looking to render simple data-less templates, you can
get up and running with the command line interface:

$ staticjinja build
 Rendering index.html...

This will recursively search ./templates for templates (any file
whose name does not start with . or _) and build them to
..

To monitor your source directory for changes, and recompile files if
they change, use watch:

$ staticjinja watch
 Rendering index.html...
 Watching 'templates' for changes...
 Press Ctrl+C to stop.

CLI Configuration

build and watch each take 3 options:

	--srcpath - the directory to look in for templates (defaults to
./templates);

	--outpath - the directory to place rendered files in (defaults
to .);

	--static - the directory (or directories) within srcpath
where static files (such as CSS and JavaScript) are stored. Static
files are copied to the output directory without any template
compilation, maintaining any directory structure. This defaults to
None, meaning no files are considered to be static files. You
can pass multiple directories separating them by commas:
--static="foo,bar/baz,lorem".

Next Steps

If the CLI does not satisfy your needs, more advanced configuration can be
done with custom python build scripts using the staticjinja API.
See Advanced Usage for details.

Advanced Usage

This document covers some of staticjinja’s more advanced features.

Partials and ignored files

A partial file is a file whose name begins with a _. Partial files are
intended to be included in other files and are not rendered. If a partial file
changes, it will trigger a rebuild if you are running staticjinja watch.

An ignored file is a file whose name begins with a .. Ignored files are
neither rendered nor used in rendering templates.

If you want to configure what is considered a partial or ignored file, subclass
Site and override is_partial or is_ignored.

Using Custom Build Scripts

The command line shortcut is convenient, but sometimes your project
needs something different than the defaults. To change them, you can
use a build script.

A minimal build script looks something like this:

from staticjinja import Site

if __name__ == "__main__":
 site = Site.make_site()
 # enable automatic reloading
 site.render(use_reloader=True)

To change behavior, pass the appropriate keyword arguments to
Site.make_site.

	To change which directory to search for templates, set
searchpath="searchpath_name" (default is ./templates).

	To change the output directory, pass in outpath="output_dir"
(default is .).

	To add Jinja extensions, pass in extensions=[extension1,
extension2, ...].

	To change which files are considered templates, subclass the
Site object and override is_template.

Note

Deprecated since version 0.3.4: Use Make or similar to copy static files. See Issue #58 [https://github.com/staticjinja/staticjinja/issues/58]

To change where static files (such as CSS or JavaScript) are stored,
set staticpaths=["mystaticfiles/"] (the default is None, which
means no files are considered to be static files). You can pass
multiple directories in the list: staticpaths=["foo/", "bar/"].
You can also specify singly files to be considered as static:
staticpaths=["favicon.ico"].

Finally, just save the script as build.py (or something similar)
and run it with your Python interpreter.

$ python build.py
Building index.html...
Templates built.
Watching 'templates' for changes...
Press Ctrl+C to stop.

Loading data

Some applications render templates based on data sources (e.g. CSVs or
JSON files).

The simplest way to supply data to templates is to pass Site.make_site() a
mapping from variable names to their values (a “context”) as the env_globals
keyword argument.

if __name__ == "__main__":
 site = Site.make_site(env_globals={
 'greeting':'Hello world!',
 })
 site.render()

Anything added to this dictionary will be available in all templates:

<!-- templates/index.html -->
<h1>{{greeting}}</h1>

If the context needs to be different for each template, you can restrict
contexts to certain templates by supplying Site.make_site() a sequence of
regex-context pairs as the contexts keyword argument. When rendering a
template, staticjinja will search this sequence for the first regex that matches
the template’s name, and use that context to interpolate variables. For example,
the following code block supplies a context to the template named “index.html”:

from staticjinja import Site

if __name__ == "__main__":
 context = {'knights': ['sir arthur', 'sir lancelot', 'sir galahad']}
 site = Site.make_site(contexts=[('index.html', context)])
 site.render()

<!-- templates/index.html -->
<h1>Knights of the Round Table</h1>

{% for knight in knights %}
 {{ knight }}
{% endfor %}

If contexts needs to be generated dynamically, you can associate filenames with
functions that return a context (“context generators”). Context generators may
either take no arguments or the current template as its sole argument. For
example, the following code creates a context with the last modification time of
the template file for any templates with an HTML extension:

import datetime
import os

from staticjinja import Site

def date(template):
 template_mtime = os.path.getmtime(template.filename)
 date = datetime.datetime.fromtimestamp(template_mtime)
 return {'template_date': date.strftime('%d %B %Y')}

if __name__ == "__main__":
 site = Site.make_site(
 contexts=[('.*.html', date)],
)
 site.render()

By default, staticjinja uses the context of the first matching regex if multiple
regexes match the name of a template. You can change this so that staticjinja
combines the contexts by passing mergecontexts=True as an argument to
Site.make_site(). Note the order is still important if several matching
regex define the same key, in which case the last regex wins. For example,
given a build script that looks like the following code block, the context of
the index.html template will be {'title': 'MySite - Index', 'date': '05
January 2016'}.

import datetime
import os

from staticjinja import Site

def base(template):
 template_mtime = os.path.getmtime(template.filename)
 date = datetime.datetime.fromtimestamp(template_mtime)
 return {
 'template_date': date.strftime('%d %B %Y'),
 'title': 'MySite',
 }

def index(template):
 return {'title': 'MySite - Index'}

if __name__ == "__main__":
 site = Site.make_site(
 contexts=[('.*.html', base), ('index.html', index)],
 mergecontexts=True,
)
 site.render()

Filters

Filters modify variables. staticjinja uses Jinja2 to process templates, so all
the standard Jinja2 filters [https://jinja.palletsprojects.com/templates/#builtin-filters] are supported. To add your own filters, simply
pass filters as an argument to Site.make_site().

filters = {
 'hello_world': lambda x: 'Hello world!',
 'my_lower': lambda x: x.lower(),
}

if __name__ == "__main__":
 site = Site.make_site(filters=filters)
 site.render()

Then you can use them in your templates as you would expect:

<!-- templates/index.html -->
{% extends "_base.html" %}
{% block body %}
<h1>{{'' | hello_world}}</h1>
<p>{{'THIS IS AN EXAMPLE WEB PAGE.' | my_lower}}</p>
{% endblock %}

Rendering rules

Rendering is the step in the build process where templates are evaluated to
their final values using contexts, and the output files are written to disk.

Sometimes you’ll find yourself needing to change how a template is
rendering. For instance, you might want to render files with a .md
from Markdown to HTML, without needing to put jinja syntax in your
Markdown files. The following walkthrough is an explanation of the example
that you can find and run yourself at examples/markdown/.

Note

If you want to run the example, you will need to install the markdown
library from https://pypi.org/project/Markdown/

The structure of the project after running will be:

markdown
├── build.py
├── src
│ ├── _post.html
│ └── posts
│ ├── post1.md
│ └── post2.md
└── build
 └── posts
 ├── post1.html
 └── post2.html

First, look at src/_post.html…

<!-- src/_post.html -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>My Blog</title>
 </head>
 <body>
 {{ post_content_html }}
 </body>
</html>

This template will be used for each of our markdown files, each of which might
represent a blog post. This template expects a context with a
post_content_html entry, which will get generated from each markdown file.

Now let’s look at our build script. It does two things:

	For every markdown template, use a context generator function (see above) to
translate the markdown contents into html using the markdown library.

	For each markdown template, compile that context into the src/_post.html
template, and then write that to disk. The output post1.html should be
placed in the same location relative to out/ as the input post1.md
was relative to src/.

The first step is accomplished in md_context(), and the second step is done
in render_md():

build.py
#!/usr/bin/env python3
import os

Markdown to HTML library
https://pypi.org/project/Markdown/
import markdown

from staticjinja import Site

markdowner = markdown.Markdown(output_format="html5")
def md_context(template):
 with open(template.filename) as f:
 markdown_content = f.read()
 return {'post_content_html': markdowner.convert(markdown_content)}

def render_md(site, template, **kwargs):
 # Given a template such as posts/post1.md
 # Determine the post's title (post1) and it's directory (posts/)
 directory, fname = os.path.split(template.name)
 post_title, _ = fname.split(".")

 # Determine where the result will be streamed (build/posts/post1.html)
 out_dir = os.path.join(site.outpath, directory)
 post_fname = "{}.html".format(post_title)
 out = os.path.join(out_dir, post_fname)

 # Render and stream the result
 if not os.path.exists(out_dir):
 os.makedirs(out_dir)
 post_template = site.get_template("_post.html")
 post_template.stream(**kwargs).dump(out, encoding="utf-8")

site = Site.make_site(
 searchpath='src',
 outpath='build',
 contexts=[('.*.md', md_context)],
 rules = [('.*.md', render_md)],
)

site.render()

Note the rule we defined at the bottom. It tells staticjinja to check
if the filename matches the .*.md regex, and if it does, to
render the file using render_md().

There are other, more complicated things you could do in a custom render
function as well, such as not write the output to disk at all, but instead
pass it somewhere else.

Developer Interface

This part of the documentation covers staticjinja’s API.

Most of staticjinja’s functionality can be accessed with
Site.make_site(), so pay particular attention to that.

Classes

	
class staticjinja.Site(environment, searchpath, outpath='.', encoding='utf8', logger=None, contexts=None, rules=None, staticpaths=None, mergecontexts=False)

	The Site object.

	Parameters

	
	environment – A jinja2.Environment [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Environment].

	searchpath – A string representing the name of the directory to search for
templates.

	contexts – A list of regex, context pairs. Each context is either a dictionary
or a function that takes either no argument or or the current template
as its sole argument and returns a dictionary. The regex, if matched
against a filename, will cause the context to be used.

	rules – A list of (regex, function) pairs. The Site will delegate
rendering to function if regex matches the name of a template
during rendering. function must take a staticjinja.Site
object, a jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template], and a context dictionary as
parameters and render the template. Defaults to [].

	encoding – The encoding of templates to use.

	logger – A logging.Logger object used to log events. Defaults to
logging.getLogger(__name__)

	staticpaths –
Deprecated since version 0.3.4.

List of directory names to get static files from (relative to
searchpath).

	mergecontexts – A boolean value. If set to True, then all matching regex from the
contexts list will be merged (in order) to get the final context.
Otherwise, only the first matching regex is used. Defaults to
False.

	
get_context(template)

	Get the context for a template.

If no matching value is found, an empty context is returned.
Otherwise, this returns either the matching value if the value is
dictionary-like or the dictionary returned by calling it with
template if the value is a function.

If several matching values are found, the resulting dictionaries will
be merged before being returned if mergecontexts is True. Otherwise,
only the first matching value is returned.

	Parameters

	template – the template to get the context for

	
get_dependencies(filename)

	Get a list of files that depends on the file named filename.

	Parameters

	filename – the name of the file to find dependencies of

	
get_rule(template_name)

	Find a matching compilation rule for a function.

Raises a ValueError if no matching rule can be found.

	Parameters

	template_name – the name of the template

	
get_template(template_name)

	Get a jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] from the environment.

	Parameters

	template_name – A string representing the name of the template.

	
is_ignored(template_name)

	Check if a template is an ignored template. Ignored templates are
neither rendered nor used in rendering templates.

A template is considered ignored if it or any of its parent directories
are prefixed with an '.'.

	Parameters

	template_name – the name of the template to check

	
is_partial(template_name)

	Check if a template is a partial template. Partial templates are not
rendered, but they are used in rendering templates.

A template is considered a partial if it or any of its parent
directories are prefixed with an '_'.

	Parameters

	template_name – the name of the template to check

	
is_static(template_name)

	Check if a template is a static template. Static template are copied,
rather than compiled using Jinja2.

Deprecated since version 0.3.4.

A template is considered static if it lives in any of the directories
specified in staticpaths.

	Parameters

	template_name – the name of the template to check

	
is_template(filename)

	Check if a file is a template.

A file is a considered a template if it is not partial, ignored, or
static.

	Parameters

	filename – the name of the file to check

	
classmethod make_site(searchpath='templates', outpath='.', contexts=None, rules=None, encoding='utf8', followlinks=True, extensions=None, staticpaths=None, filters={}, env_globals={}, env_kwargs=None, mergecontexts=False)

	Create a Site object.

	Parameters

	
	searchpath – A string representing the absolute path to the directory that the
Site should search to discover templates. Defaults to
'templates'.

If a relative path is provided, it will be coerced to an absolute
path by prepending the directory name of the calling module. For
example, if you invoke staticjinja using python build.py in
directory /foo, then searchpath will be /foo/templates.

	outpath – A string representing the name of the directory that the Site
should store rendered files in. Defaults to '.'.

	contexts – A list of (regex, context) pairs. The Site will render templates
whose name match regex using context. context must be either
a dictionary-like object or a function that takes either no
arguments or a single jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] as an argument and
returns a dictionary representing the context. Defaults to [].

	rules – A list of (regex, function) pairs. The Site will delegate
rendering to function if regex matches the name of a template
during rendering. function must take a staticjinja.Site
object, a jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template], and a context dictionary as
parameters and render the template. Defaults to [].

	encoding – A string representing the encoding that the Site should use when
rendering templates. Defaults to 'utf8'.

	followlinks – A boolean describing whether symlinks in searchpath should be
followed or not. Defaults to True.

	extensions – A list of Jinja extensions [https://jinja.palletsprojects.com/en/2.11.x/extensions/#jinja-extensions] that the
jinja2.Environment [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Environment] should use. Defaults to [].

	staticpaths –
Deprecated since version 0.3.4.

List of directories to get static files from (relative to
searchpath). Defaults to None.

	filters – A dictionary of Jinja2 filters to add to the Environment. Defaults
to {}.

	env_globals – A mapping from variable names that should be available all the time
to their values. Defaults to {}.

	env_kwargs – A dictionary that will be passed as keyword arguments to the
jinja2 Environment. Defaults to {}.

	mergecontexts – A boolean value. If set to True, then all matching regex from
the contexts list will be merged (in order) to get the final
context. Otherwise, only the first matching regex is used.
Defaults to False.

	
render(use_reloader=False)

	Generate the site.

	Parameters

	use_reloader – if given, reload templates on modification

	
render_template(template, context=None, filepath=None)

	Render a single jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] object.

If a Rule matching the template is found, the rendering task is
delegated to the rule.

	Parameters

	
	template – A jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] to render.

	context – Optional. A dictionary representing the context to render
template with. If no context is provided, get_context() is
used to provide a context.

	filepath – Optional. A file or file-like object to dump the complete template
stream into. Defaults to to os.path.join(self.outpath,
template.name).

	
render_templates(templates)

	Render a collection of jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] objects.

	Parameters

	templates – A collection of jinja2.Template [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Template] objects to render.

	
templates

	Generator for templates.

	
class staticjinja.Reloader(site)

	Watches site.searchpath for changes and re-renders any changed
Templates.

	Parameters

	site – A Site object.

	
event_handler(event_type, src_path)

	Re-render templates if they are modified.

	Parameters

	
	event_type – a string, representing the type of event

	src_path – the path to the file that triggered the event.

	
should_handle(event_type, filename)

	Check if an event should be handled.

An event should be handled if a file in the searchpath was modified.

	Parameters

	
	event_type – a string, representing the type of event

	filename – the path to the file that triggered the event.

	
watch()

	Watch and reload modified templates.

Contributing

If you’ve found a bug, have an idea for a feature, or have a comment or other
question, we would love to hear from you. Search the Issues [https://github.com/staticjinja/staticjinja/issues] to see if anyone
else has run into the same thing. If so, add onto that issue. Otherwise, start
your own issue. Thanks for your thoughts!

If you want to implement the change yourself (that would be awesome!) then
continue…

Get the Code

Fork the staticjinja/staticjinja [https://github.com/staticjinja/staticjinja] repository on GitHub. Clone a copy of your
fork, install all the dependencies, and then install tox [https://tox.readthedocs.org/en/stable/] for testing:

$ cd $HOME/projects
$ git clone git://github.com/{YOUR_USERNAME}/staticjinja.git
$ cd staticjinja
$ python -m pip install --upgrade pip
$ pip install -r requirements.txt
$ pip install tox

Making Changes

Start making edits! If you need to test these changes against your personal
project, then you’ll need to install the local, modified version of
staticjinja for your project to use. Do this by running

$ python setup.py install

whenever you make edits. There might be a better way to do this, but IDK what
it is. Please file an Issues [https://github.com/staticjinja/staticjinja/issues] if you know!

Testing your Changes

You should test your changes with tox [https://tox.readthedocs.org/en/stable/]:

$ tox

This will:

	Run tests on multiple Python versions.

	Check that the code is formatted to conform to PEP 8.

	Check that the documentation builds successfully.

Submitting a Pull Request

Nice job, your code looks awesome! Once you’re done with your improvements,
there are a few checklist items that you should think about that will increase
the chances your PR will be accepted:

	Add yourself to AUTHORS.rst if you want.

	If relevant, write tests that fail without your code and pass
with it. The goal is to increase our test coverage.

	Update all documentation that would be affected by your contribution.

	Use good commit message style [https://chris.beams.io/posts/git-commit/].

	Once your PR is submitted, make sure the GitHub Actions tests pass.

Once you’re satisfied, push to your GitHub fork and submit a pull request
against the staticjinja/staticjinja [https://github.com/staticjinja/staticjinja] main branch.

At this point you’re waiting on me. I may suggest some changes or improvements
or alternatives. I am slow, I’m sorry. It may be weeks or months before I get
to it. I know, that’s pretty terrible, but this is just a hobby project for me.
If you want to help speed things up by taking on co-maintainership, let me
know.

Thanks for your help!

Authors

staticjinja was written and maintained by Ceasar Bautista and
various contributors. Now Caesar has passed maintaining responsibilities to
Nick Crews. If you would like to share the responsibilities of maintaining,
let Nick know, he often does not get to issues as soon as he would like :)

Development Lead

	(Current lead) Nick Crews, @NickCrews, <nicholas.b.crews@gmail.com>

	(Former lead) Ceasar Bautista, @Caesar, <cbautista2010@gmail.com>

Patches and Suggestions

	Dominic Rodger (dominicrodger)

	Filippo Valsorda

	Alexey (rudyrk)

	Jacob Lyles

	Jakub Zalewski

	NeuronQ

	Eduardo Rivas (jerivas)

	Bryan Bennett (bbenne10)

	Anuraag Agrawal (anuraaga)

	saschalalala

	Tim Best (timbest)

	Fasih Ahmad Fakhri

Changelog

Unreleased [https://github.com/staticjinja/staticjinja/compare/1.0.3...HEAD]

1.0.3 [https://github.com/staticjinja/staticjinja/compare/1.0.2...1.0.3] (2021-01-24)

Fixed

	Fix links to external APIs in docs.

	Use the real readthedocs html theme when building docs locally.

1.0.2 [https://github.com/staticjinja/staticjinja/compare/1.0.1...1.0.2] (2021-01-22)

Fixed

	Fix token to actions/create-release@v1 in publish workflow

	Fix links throughout project.

1.0.1 [https://github.com/staticjinja/staticjinja/compare/1.0.0...1.0.1] (2021-01-22)

Fixed

	Pin upload to PyPI action (pypa/gh-action-pypi-publish, used in the publish
workflow) to @v1.4.1, instead of just @master. Less prone to breakage.

1.0.0 [https://github.com/staticjinja/staticjinja/compare/0.4.0...1.0.0] (2021-01-19)

Added

	Runnable and testable examples in examples/. See examples/README.rst
for more info.

	Code coverage at https://codecov.io/gh/staticjinja/staticjinja.

Changed

	Use GitHub Actions instead of Travis CI for CI testing.

	Out directory no longer needs to exist in CLI.

	Add more default arguments (logger, outpath, and encoding) to
Site.__init__() so that Site.make_site() doesn’t have to make them.

	Update requirements using piptools. This dropped a dependency on
pathtools.

	Upload test results as artifacts to better diagnose failures in
GitHub Actions.

Deprecated

Removed

	Python 2, 3.4, and 3.5 support. Now only Python 3.6 to 3.9 is supported.

	Remove broken filepath arg from Site.render_templates().
You shouldn’t notice this though, since it crashed if was used :)

Fixed

	Fix tests and __main__.py to use Site.make_site(), not deprecated
staticjinja.make_site().

	Tests are now split up into separate files in the tests/ directory.
The one monolithic file was intimidating. Some repeated boilerplate tests
were parameterized as well. The tests could still use some more cleanup in
general.

	Overhaul contributing info. Port CONTRIBUTING.md over to CONTRIBUTING.rst,
edit it, and then import this version in docs.

	Fix CWD logic loophole if Site.make_site() is called from an interpreter.

	Update use of deprecated inspect.getargspec().

	A few other trivial fixes.

0.4.0 [https://github.com/staticjinja/staticjinja/compare/0.3.5...0.4.0] (2020-11-14)

	Improve Travis CI testing: Add Windows and OSX, stop testing python2,
add newer python3 versions, update tox.ini.

	Convert all print()s to logger.logs().

	Make CLI interface use Site.make_site() instead of deprecated make_site().

	Simplify style and how kwargs are passed around.

	Single-source the version info so it’s always consistent.

	Minor fixes, updates, improvements to README, AUTHORS, CONTRIBUTING,
setup.py, __init__.py docstring,

	Rename Site._env to Site.env, making it publicly accessible, for instance
in custom rendering functions.

	Fix docstring for the expected signature of custom rendering rules so they
expect a staticjinja.Site as opposed to a jinja2.Environment

	Make is_{template,static,ignored,partial} functions be consistent with
taking template names(always use /), not file names (use os.path.sep),
making them consistent between OSs.
https://github.com/staticjinja/staticjinja/issues/88

	Update and improve docs, add .readthedocs.yml so that ReadTheDocs.org can
automatically pull from the repo and build docs on changes. Add a badge
for if the doc build passes. Add readthedocs build task as a GitHub check,
so new PRs and branches will automatically get this check.

	Change single example/ directory to a collection of examples in examples/,
and add in an example for using custom rendering rules to generate HTML from
markdown. This also fixes the totally wrong tutorial on the docs for how to
use custom rendering rules. See https://github.com/staticjinja/staticjinja/pull/102

	Update dependencies using pip-tools to automatically generate indirect
dependencies from direct dependencies:

	jinja2==2.6 -> jinja2==2.11.2

	argh==0.21.0 -> REMOVED

	argparse==1.2.1 -> REMOVED

	docopt==0.6.1 -> docopt==0.6.2

	easywatch==0.0.5 -> easywatch==0.0.5

	pathtools==0.1.2 -> pathtools==0.1.2

	watchdog==0.6.0 -> watchdog==0.10.3

	wsgiref==0.1.2 -> REMOVED

	NONE -> markupsafe==1.1.1

0.3.5 [https://github.com/staticjinja/staticjinja/compare/0.3.4...0.3.5] (2018-08-16)

	Make README less verbose.

	Only warn about using deprecated staticpaths if staticpaths is
actually used.

	Updated easywatch to 0.0.5

0.3.4 [https://github.com/staticjinja/staticjinja/compare/0.3.3...0.3.4] (2018-08-14)

	Move make_site() to Site.make_site().

	Deprecate staticpaths argument to Site() and Site.make_site().
See Issue #58 [https://github.com/staticjinja/staticjinja/issues/58].

	Add an option (default True) for Jinja’s FileSystemLoader
follow to symlinks when loading templates.

	Ensure that the output directory exists, regardless of whether custom
rendering rules were supplied. Before that was only ensured if custom
rendering rules were not given.

	License file is included now in distributions.

	Add documentation for partial and ignored files.

	Updated easywatch to 0.0.4.

	Fix a few style errors.

0.3.3 [https://github.com/staticjinja/staticjinja/compare/0.3.2...0.3.3] (2016-03-08)

	Enable users to direct pass dictionaries instead of context generator in Site
and make_site() for contexts that don’t require any logic.

	Introduces a mergecontexts parameter to Site and make_site() to direct
staticjinja to either use all matching context generator or only the first
one when rendering templates.

0.3.2 [https://github.com/staticjinja/staticjinja/compare/0.3.1...0.3.2] (2015-11-23)

	Allow passing keyword arguments to jinja2 Environment.

	Use shutil.copy2 instead of shutil.copyfile when copying static
resources to preserve the modified time of files which haven’t been modified.

	Make the Reloader handle “created” events to support editors like Pycharm
which save by first deleting then creating, rather than modifying.

	Update easywatch dependency to 0.0.3 to fix an issue that occurs when
installing easywatch 0.0.2.

	Make --srcpath accept both absolute paths and relative paths.

	Allow directories to be marked partial or ignored, so that all files inside
them can be considered partial or ignored. Without this, developers would need
to rename the contents of these directories manually.

	Allow users to mark a single file as static, instead of just directories.

0.3.1 [https://github.com/staticjinja/staticjinja/compare/0.3.0...0.3.1] (2015-01-21)

	Add support for filters so that users can define their own Jinja2 filters and
use them in templates:

filters = {
 'filter1': lambda x: "hello world!",
 'filter2': lambda x: x.lower()
}
site = staticjinja.make_site(filters=filters)

	Add support for multiple static directories. They can be passed as a string
of comma-separated names to the CLI or as a list to the Renderer.

	“Renderer” was renamed to “Site” and the Reloader was moved
staticjinja.reloader.

0.3.0 [https://github.com/staticjinja/staticjinja/compare/0.2.0...0.3.0] (2014-06-04)

	Add a command, staticjinja, to handle the simple case of
building context-less templates.

	Add support for copying static files from the template directory to
the output directory.

	Add support for testing, linting and checking the documentation
using tox.

0.2.0 (2014-01-04)

	Add a Reloader class.

	Add Renderer.templates, which refers to the lists of templates available
to the Renderer.

	Make Renderer.get_context_generator() private.

	Add Renderer.get_dependencies(filename), which gets every file that
depends on the given file.

	Make Renderer.render_templates() require a list of templates to render,
templates.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 staticjinja	

Index

 E
 | G
 | I
 | M
 | R
 | S
 | T
 | W

E

 	
 	event_handler() (staticjinja.Reloader method)

G

 	
 	get_context() (staticjinja.Site method)

 	get_dependencies() (staticjinja.Site method)

 	
 	get_rule() (staticjinja.Site method)

 	get_template() (staticjinja.Site method)

I

 	
 	is_ignored() (staticjinja.Site method)

 	is_partial() (staticjinja.Site method)

 	
 	is_static() (staticjinja.Site method)

 	is_template() (staticjinja.Site method)

M

 	
 	make_site() (staticjinja.Site class method)

R

 	
 	Reloader (class in staticjinja)

 	render() (staticjinja.Site method)

 	
 	render_template() (staticjinja.Site method)

 	render_templates() (staticjinja.Site method)

S

 	
 	should_handle() (staticjinja.Reloader method)

 	
 	Site (class in staticjinja)

 	staticjinja (module)

T

 	
 	templates (staticjinja.Site attribute)

W

 	
 	watch() (staticjinja.Reloader method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 staticjinja

 		
 Quickstart

 		
 Installation

 		
 Rendering templates with CLI

 		
 CLI Configuration

 		
 Next Steps

 		
 Advanced Usage

 		
 Partials and ignored files

 		
 Using Custom Build Scripts

 		
 Loading data

 		
 Filters

 		
 Rendering rules

 		
 Developer Interface

 		
 Classes

 		
 Contributing

 		
 Get the Code

 		
 Making Changes

 		
 Testing your Changes

 		
 Submitting a Pull Request

 		
 Authors

 		
 Development Lead

 		
 Patches and Suggestions

 		
 Changelog

 		
 Unreleased

 		
 1.0.3 (2021-01-24)

 		
 Fixed

 		
 1.0.2 (2021-01-22)

 		
 Fixed

 		
 1.0.1 (2021-01-22)

 		
 Fixed

 		
 1.0.0 (2021-01-19)

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Removed

 		
 Fixed

 		
 0.4.0 (2020-11-14)

 		
 0.3.5 (2018-08-16)

 		
 0.3.4 (2018-08-14)

 		
 0.3.3 (2016-03-08)

 		
 0.3.2 (2015-11-23)

 		
 0.3.1 (2015-01-21)

 		
 0.3.0 (2014-06-04)

 		
 0.2.0 (2014-01-04)

_static/ajax-loader.gif

